uqac.ca

web

8INF436

Forage de données

(3.0 cr.)

Acquérir des connaissances avancées en apprentissage automatique pour l'analyse de données massives. Se familiariser avec les algorithmes de l'apprentissage supervisé et non supervisé en ligne et distribué. Mettre en pratique les connaissances acquises sur des cas réels en science des données.

Fondements de l'apprentissage automatique. Données massives et contraintes calculatoires. Flux de données. Algorithmes d'échantillonnage et comptage. Réduction de dimensionnalité. Dérive conceptuelle et détection de ruptures. Apprentissage supervisé en ligne. Algorithmes incrémentaux. VFDT. Apprentissage non-supervisé en ligne. Clustering incrémental. STREAM. Distribution de données massives. MapReduce et Hadoop. Apprentissage parallèle et grille informatique. Ensemble de méthodes et combinaison de modèles. Motifs fréquents et règles d'association distribuées. Apprentissage profond. Apprentissage semi-supervisé en ligne. Méthodologie d'apprentissage et ingénierie du logiciel. Fouille des réseaux sociaux. Environnement d'apprentissage et utilisation de librairies. Les exercices seront réalisés avec MOA (Massive Online Analysis), WekaHadoop, TensorFlow, Python.

Préalable(s): (8IAR403 et 8STT105)

Formule pédagogique : Cours Magistral

(06/2020)

Appartenance départementale

Informatique et mathématique

Programmes dans lesquels se trouve ce cours

4202 Certificat en informatique
6710 Baccalauréat en informatique de la science des données et de l'intelligence d'affaires
7833 Baccalauréat en informatique

Ce cours est offert au trimestre suivant:

Hiver 2021

Groupe 01 (CHICOUTIMI JOUR) - RÉSERVÉ

du vendredi 08-01-2021 au vendredi 23-04-2021 de 08:00 à 10:45 Local: XXXXXXXXX
© UQAC 2020. Tous droits réservés.